Synthesis of Large Single Crystals of Pentasil-type Silica Zeolites from Non-alkaline Medium

Zhao Daqing, Qiu Shilun, and Pang Wenqin*

Department of Chemistry, Jilin University, Changchun, P.R. China

Large single crystals of pentasil-type silica zeolites (Silicalite-I and ZSM-39) have been synthesized with choline cation, 1,4-diazabicyclo[2.2.2]octane, and tetramethylammonium cation as templates from non-alkaline medium.

The morphology of zeolite crystals is an important factor in many studies and industrial applications.^{1,2} Great effort has been devoted to the synthesis of large crystals of zeolite ZSM- $5,^{3-5}$ but the products are often contaminated with gel or other unwanted substances. However, previous authors

reported the synthesis of large crystals of ZSM-5 using TPA⁺ (tetrapropylammonium cation) as a template. There is no report in the literature on the synthesis of large single crystals of ZSM-5 with other organic templates. A new route to prepare pentasil-type zeolites was developed by Guth,⁵ using

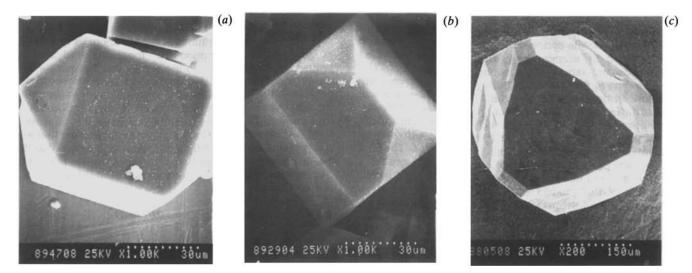


Figure 1. Scanning electron micrographs of (a) Choline-silicalite-I (sample A), (b) DO-silicalite-I (sample B), and (c) Silica ZSM-39 (sample C).

Table 1. The typical reactant compositions, crystallization conditions, and products.

							Crystallization Temperature		
	Sample	SiO_2	Template ^a	NH_4F	HF	H_2O	time (days)	Î∕°C	Products
	А	1.0	0.5	1.0		50	21	190	ZSM-5
	В	1.0	0.5		1.5	40	52	150	ZSM-5
	С	1.0	1.1	1.8	—	40	7	190	ZSM-39
^a The templ	ate of sample	A, B and	C is CH+, DO	and TMA+,	respectively	<i>.</i>			

a non-alkaline medium in the presence of fluoride ions. In this way, large single crystals of Silicalite-I were obtained with TPA⁺ cation. Here we report the synthesis of large single crystals of Silicalite-I with choline cation (CH⁺) and 1,4-diazabicyclo[2.2.2]octane (DO), and silica ZSM-39 with tetramethylammonium cation (TMA⁺). The samples were characterized by means of X-ray powder diffraction, scanning-electron microscopy, composition and thermal analysis.

A typical synthesis began with the combination of water and templates. A solution was formed, to which fumed silica and NH₄F or HF(40%) were added with stirring. The crystallization of the reaction mixture was carried out in a stainless steel autoclave under autogenous pressure at 150–190 °C. The crystalline product was filtered, washed, and dried at ambient temperature. The typical reactant compositions, crystallization conditions, and products are listed in Table 1.

The Silicalite-I was synthesized with CH⁺ and DO respectively, and silica ZSM-39 was prepared using TMA as a template. The experiments were successful in obtaining fully crystalline and pure phases. No contamination with other zeolites or species was observed under X-ray powder diffraction examination. The scanning electron microscopy analysis (Figure 1) shows that both the single crystals of sample A and B have the same shape and the same size, *ca.* 100 µm in length. The crystal of sample C has the typical octahedral shape, but is considerably larger (400 µm).

DTA-TG (differential thermal analysis-thermogravimetric)

analysis shows that the sample A and B lost organic species at 408 and 420 °C, respectively. Thermal analysis of sample C shows that the organic template could not be completely removed from the silica framework by heating in air at 1200 °C for 9 h. The compositions of samples A, B, and C obtained from chemical analysis are $(CHF)_{9.4} \cdot (SiO_2)_{96}$, $(DOHF)_{4.8} \cdot (SiO_2)_{96}$, and $(TMAF)_{9.4} \cdot (SiO_2)_{136}$, respectively. In summary, large single crystals of Silicalite-I and silica ZSM-39 have been produced for the first time hydrothermally

from R-SiO₂-H₂O-F⁻ (R = choline cation, 1,4-diazabicyclo[2.2.2] octane and tetramethylammonium cation, respectively) systems.

Received, 4th January 1990; Com. 0/00078G

References

- 1 L. B. Sand, Proceedings of the 5th International Conference on Zeolites, 1980, p. 1.
- 2 S. Z. Chen, K. Huddersman, D. Keir, and L. V. C. Rees, Zeolites, 1988, 8, 106.
- 3 H. Lermer, Zeolites, 1985, 5, 131.
- 4 R. von Ballmoos and M. W. Meier, *Nature (London)*, 1981, **289**, 782.
- 5 J. L. Guth, H. Kessler, and R. Wey, in 'Studies in Surface Science and Catalysis,' eds. Y. Murakami, A. Iijima, and J. W. Ward, Elsevier, Amsterdam, 1986, vol. 28, p. 121.